Exfoliation of large-area transition metal chalcogenide single layers

نویسندگان

  • Gábor Zsolt Magda
  • János Pető
  • Gergely Dobrik
  • Chanyong Hwang
  • László P. Biró
  • Levente Tapasztó
چکیده

Isolating large-areas of atomically thin transition metal chalcogenide crystals is an important but challenging task. The mechanical exfoliation technique can provide single layers of the highest structural quality, enabling to study their pristine properties and ultimate device performance. However, a major drawback of the technique is the low yield and small (typically < 10 μm) lateral size of the produced single layers. Here, we report a novel mechanical exfoliation technique, based on chemically enhanced adhesion, yielding MoS2 single layers with typical lateral sizes of several hundreds of microns. The idea is to exploit the chemical affinity of the sulfur atoms that can bind more strongly to a gold surface than the neighboring layers of the bulk MoS2 crystal. Moreover, we found that our exfoliation process is not specific to MoS2, but can be generally applied for various layered chalcogenides including selenites and tellurides, providing an easy access to large-area 2D crystals for the whole class of layered transition metal chalcogenides.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers.

The isolation of few-layered transition metal dichalcogenides has mainly been performed by mechanical and chemical exfoliation with very low yields. In this account, a controlled thermal reduction-sulfurization method is used to synthesize large-area (~1 cm(2)) WS2 sheets with thicknesses ranging from monolayers to a few layers. During synthesis, WOx thin films are first deposited on Si/SiO2 su...

متن کامل

Layered transition metal dichalcogenides: promising near-lattice-matched substrates for GaN growth

Most III-nitride semiconductors are grown on non-lattice-matched substrates like sapphire or silicon due to the extreme difficulty of obtaining a native GaN substrate. We show that several layered transition-metal dichalcogenides are closely lattice-matched to GaN and report the growth of GaN on a range of such layered materials. We report detailed studies of the growth of GaN on mechanically-e...

متن کامل

Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions.

We have developed methods to exfoliate MoS 2 in large quantities in surfactant-water solutions. This method can be extended to a range of other layered compounds. The layered material tends to be exfoliated as relatively defect free flakes with lateral sizes of 100s of nm. in layered crystals and can be metals, semiconductors or insulators. [1] In addition, some are thermoelectric materials, [2...

متن کامل

Synthesis and Characterization of Nickel Sulphoselenide Thin Films

Usable electric current can be synthesized from photo electrochemical cells. The unit cells are group together to form a series of solar panel. The arrays of solar panel are generally placed under glass, polymer or plastic as a protection from the weather [1]. The usage of transition metal chalcogenide thin film in solar energy conversion can lead to a good path in developing a bright future fo...

متن کامل

Growth and Characterization of Thin MoS2 Films by Low- Temperature Chemical Bath Deposition Method

Transition metal dichalcogenide (TMDC) materials are very important inelectronic and optical integrated circuits and their growth is of great importance in thisfield. In this paper we present growth and fabrication of MoS2 (Molibdan DiSulfide)thin films by chemical bath method (CBD). The CBD method of growth makes itpossible to simply grow large area scale of the thin la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015